# Preparation and Thermal Reaction of 1,3-Bis(alkylthio)allenes 

Toshio Shimizu, Kensuke Sakamaki, and Nobumasa Kamigata*<br>Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University Minami-ohsawa, Hachioji, Tokyo 192-03, Japan


#### Abstract

Reactions of $\mathrm{Ph}_{2} \mathrm{C}_{3}$ dianion with alkyl thiocyanates or ethylene 1,2-dithiocyanate give 1,3bis(alkylthio)allenes or tetrathiacyclic bisallene, respectively. Thermal reactions of 1,3bis(benzylthio)allene and tetrathiacyclic bisallene afford 2,3,5-triphenylthiophene and 1,2-bismethylidene cyclobutane derivatives, respectively. © 1997 Elsevier Science Ltd.


The chemistry of allenes has been extensively studied and many reviews on their preparation and reactivities have been published. ${ }^{12}$ Substituted allenes by heteroatoms such as silicon, phosphorus and sulfur have also received attention. ${ }^{1}$ Among the sulfur-substituted allenes, mono-, ${ }^{3,4}$ 1,1-bis-, ${ }^{5}$ tris- ${ }^{6}$ and tetrakis ${ }^{6}$ (alkylthio)allenes had been synthesized in the 1960's. However, few reactions of the alkylthioallenes have been reported. We succeeded in preparing 1,3-bis(alkylthio)allenes and tetrathiacyclic bisallene by reactions of $\mathrm{Ph}_{2} \mathrm{C}_{3}$ dianion with the corresponding alkyl thiocyanates and found that the thermal reactions of the 1,3 bis(benzylthio)allene and the tetrathiacyclic bisallene gave 2,3,5-triphenylthiophene and 1,2 -bismethylidene cyclobutane derivatives, respectively.

When a THF solution of two equiv. amount of methyl thiocyanate was added dropwise to $\mathrm{Ph}_{2} \mathrm{C}_{3}$ dianion, prepared from 1,3 -diphenylpropyne and $n$-butyllithium in ether/THF solution, at $-80^{\circ} \mathrm{C}$ and allowed to warm to room temperature, 1,3 -bis(methylthio)-1,3-diphenylpropadiene (1a) ${ }^{7}$ was obtained in $62 \%$ yield after purification by column chromatography on silica-gel, then gel-permeation chromatography (Scheme 1). Similar reaction of the dianion with benzyl thiocyanate also gave 1,3 -bis(benzylthio)-1,3-diphenylpropadiene (1b) ${ }^{\mathbf{8}}$ in $\mathbf{8 8 \%}$ yield. 3,3-Bis(alkylthio)propyne, the formation of which is possible by the reactions with the dianion, was not detected in either reaction. Reaction of the dianion with ethylene 1,2 -dithiocyanate formed tetrathiacyclic bisallene $2^{9}$ in $21 \%$ yield (dl/meso $=41 / 59$ ), though the reaction with methylene dithiocyanate did not give the corresponding cyclic bisallene.

The stereochemistry of one isomer of the cyclic bisallenes, meso-2, was determined by the X-ray crystallographic analysis (Figure 1). ${ }^{10}$ The bond lengths are almost normal, and the bond angle $\mathrm{C}(1)-\mathrm{C}(2)$ $C\left(3^{*}\right)$ and torsion angle $\mathrm{S}(1)-\mathrm{C}(1)-\mathrm{C}\left(3^{*}\right)-\mathrm{S}\left(2^{*}\right)$ are 176 and $94^{\circ}$, respectively, indicating strain-free geometry.

Thermal reactivity of allenes which possess alkylthio substituents has been scarcely examined. 1,3Bis(methylthio)allene 1a and 1,3-bis(benzylthio)allene 1b are stable at room remperature, whereas tetrakis(methylthio)allene is known to undergo dimerization to give a cyclic dimer on standing at room

temperature. ${ }^{6}$ When a $p$-xylene solution of 1a was refluxed for 3 days, $68 \%$ of 1 la was consumed to give 2,4diphenyl thiophene (3), ${ }^{11}$ 1,3-dihydro-2-benzothiepin $4^{12}$ and bis(methylthiobenzylidene) cyclobutane $5^{13}$ in $30 \%, 18 \%$ and $8 \%$ yields, respectively (Scheme 2). A stereoisomer of 5 was also formed in this reaction in $8 \%$ yield, which has $C_{2}$ or $C_{8}$ symmetry based on ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR spectra, though the stereochemistry could not be clarified. 1,3-Bis(benzylthio)allene $\mathbf{1 b}$ underwent thermal reaction more easily to give 2,3,5-triphenyl thiophene (6), ${ }^{14}$ thiete $7^{15}$ and $\alpha, \beta$-unsaturated ketone $8^{16}$ in $63 \%, 5 \%$ and $11 \%$ yields, respectively, under refluxing in $p$-xylene for 1 hour. It is clear that the thermal reaction of $1,3-$ bis(alkylthio)allenes is affected by the substituents on the sulfur atoms. Thermal reaction of cyclic bisallene dl-2 caused intramolecular cyclization reaction, in preference to the other reactions found in the case of compound 1, to give tricyclic compound $9^{17}$ in quantitative yield. The isomer meso- 2 also gave an identical compound under similar conditions, quantitatively.

Bismethylidene cyclobutane 5 and the stereoisomer, and tricyclic compound 9 are considered to be formed via $2,2^{\prime}$-bisallyl biradicals ${ }^{18}$ 10 and 11, respectively. Biradical intermediate 11 is formed from both the $d l$ - and meso-isomers 2 , thus the tricyclic compound 9 is obtained as a sole product from both the isomers. Thiete 7 and ketone 8 , obtained from 1 b , are probably formed by the cyclization and hydrolysis of thioketone 12 , respectively, which is formed by homolytic cleavage of the $\mathrm{C}-\mathrm{S}$ bond in $\mathbf{1 b}$. Details of the mechanism for formation of thiophenes 3 and 6, and


Fig. 1 Molecular structure of meso-2 with 50\% thermal ellipsoids. Selected bond distances ( $\dot{A}$ ) and angles ( ${ }^{\circ}$ : $\mathrm{S}(1)-\mathrm{C}(1) 1.7753(7), \mathrm{C}(1)-\mathrm{C}(2)$ $1.3095(8), C(2)-C\left(3^{*}\right) 1.3162$ ( 8$), S\left(2^{*}\right)-C\left(3^{*}\right)$ 1.7873(7), S(1)-C(1)-C(2) 122.26(6), C(1)-C(2)$C\left(3^{*}\right) 175.73(9), S\left(2^{*}\right)-C\left(3^{*}\right)-C(2)$ 117.85(6).

Scheme 2

benzothiepin 4 are now under investigation.
The present study was financially supported in part by a Grant-in-Aid for General Scientific Research from the Ministry of Education, Science, and Culture, Japan.

## REFERENCES AND NOTES

1. Schuster, H. F.; Coppola, G. M. Allenes in Organic Synthesis; Wiley: New York, 1984; Bruneau, C.; Dixneuf, P. H. Compr. Org. Funct. Group Transform. 1995, 1, 953; and references cited therein.
2. Taylor, D. R. Chem. Rev. 1967, 67, 317; Brandsma, L.; Verkruijsee, H. D. Synthesis of Acetylenes, Allenes and Cumulenes; Elsevier: New York, 1980; The Chemistry of Ketenes, Allenes and Related Compounds, Vol. 1 and 2; Patai, S., Ed.; Wiley: New York, 1980; Huché, M. Tetrahedron 1980, 36, 331; Smadja, W. Chem. Rev. 1983, 83, 263; Pasto, D. J. Tetrahedron 1984, 40, 2805; Johnson, R. P. Chem. Rev. 1989, 89, 1111.
3. Pourcelot, G.; Cadiot, P.; Willemart, A. Compt. Rend. Acad. Sci. 1961, 252, 1630.
4. Brandsma, L.; Wijers, H. E.; Arens, J. F. Rec. Trav. Chim. Pays-Bas 1963, 82, 1040.
5. Wildschut, G. A.; van Boom, J. H.; Brandsma, L.; Arens, J. F. Rec. Trav. Chim. Pays-Bas 1968, 87, 1447.
6. Wildschut, G. A.; Brandsma, L.; Arens, J. F. Rec. Trav. Chim. Pays-Bas 1969, 88, 1132.
7. 1a: Yellow liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.24$ (s, 6 H ), $7.26-7.59$ ( $\mathrm{m}, 10 \mathrm{H}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\boldsymbol{\delta} 15.55,116.86,126.35,128.38,128.53,135.00,194.68 . \mathrm{MS}(\mathrm{m} / \mathrm{z}) 284\left(\mathrm{M}^{+}\right), 237$, 222, 191. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~S}_{2}$ : C 71.78, H 5.67. Found: C 71.92, H 5.42.
8. 1b: Pale yellow liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.65(\mathrm{~d}, 2 \mathrm{H}, J=13.2 \mathrm{~Hz}), 3.74(\mathrm{~d}, 2 \mathrm{H}, J=$ $13.2 \mathrm{~Hz}), 7.13-7.47(\mathrm{~m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 36.89,113.70,126.54,127.08$, 128.29, 128.38, 128.53, 128.97, 134.62, 137.07, 197.31. MS (m/z) $345\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Ph}\right), 313,255,222$, 190, 123, 91. Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~S}_{2}:$ C 79.77, H 5.54. Found: C 79.94, H 5.40.
9. dl-2: Mp 144.0-145.0 ${ }^{\circ} \mathrm{C}$ (colourless powder from dichloromethane-hexane). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 3.07(\mathrm{~s}, 8 \mathrm{H}), 7.27(\mathrm{tt}, 4 \mathrm{H}, J=1.5$ and 7.3 Hz$), 7.32(\mathrm{ddd}, 8 \mathrm{H}, J=1.5,7.3$, and 7.3 Hz ), 7.53 (dd, $8 \mathrm{H}, J=1.5$ and 7.3 Hz ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 31.38,112.39,126.67,128.53$, 128.62, 134.19, 197.68. MS (m/z) $564\left(\mathrm{M}^{+}\right), 536,508,476,472,444,412,387,282$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~S}_{4}$ : C 72.34, H 4.96. Found: C 72.59, H 5.00. meso-2: Mp 162.0-163.0 ${ }^{\circ} \mathrm{C}$ (colourless needles from dichloromethane-hexane). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ) $3.09-3.23(\mathrm{~m}, 8 \mathrm{H}), 7.25-7.54(\mathrm{~m}, 20 \mathrm{H})$. ${ }^{13} \mathrm{C}$-NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 31.66,110.26,126.90,128.51,128.67,133.98,200.49 . \mathrm{MS}(\mathrm{m} / \mathrm{z}) 564$ $\left(M^{+}\right), 536,508,476,472,444,412,387,282$. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{~S}_{4}: \mathrm{C} 72.34, \mathrm{H} 4.96$. Found: C 72.39, H 5.05.
10. Crystal structure analysis for meso-2 (colourless prism from dichloromethane/hexane): formula $\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~S}_{4}$, $M_{r}=564.84$, crystal dimensions $0.30 \times 0.30 \times 0.20 \mathrm{~mm}, a=5.733(1), b=11.069(3), c=12.306(3) \AA$, $\alpha=113.05(2), \beta=91.25(2), \gamma=99.24(2)^{\circ}, V=706.2(3) \AA^{3}, \rho_{\text {calct }}=1.328 \mathrm{gcm}^{-3}, Z=1$, triclinic, space group $P \overline{1}$ (No. 2), Mac Science MXC 18 diffractometer, $\lambda=0.71073 \AA, T=298 \mathrm{~K}, 3512$ measured reflections, 2575 independent, $R=0.037, R w=0.039$.
11. Wynberg, H.; van Driel, H.; Kellogg, M.; Buter, J. J. Am. Chem. Soc. 1967, 89, 3487.
12. 4: Brown liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.28(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~d}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}), 4.06(\mathrm{~d}, 1 \mathrm{H}$, $J=12.2 \mathrm{~Hz}), 4.42(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 5.90(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.21-7.49(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 15.83,33.78,46.12,122.02,127.74,127.82,128.38,128.58,128.75,128.97$, 129.28, 137.42, 137.84, 138.11, 139.03. MS (m/z) $284\left(\mathrm{M}^{+}\right), 269,252,237,203,191,135,91,77$. HRMS calc. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~S}_{2}: 284.0693$; found: 284.0713 .
13. 5: Mp $196.0-197.0^{\circ} \mathrm{C}$ (decomp.) (yellow needles from dichloromethane-hexane). ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.19(\mathrm{~s}, 6 \mathrm{H}), 1.58(\mathrm{~s}, 6 \mathrm{H}), 7.01-7.78(\mathrm{~m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.03$, 15.92, 72.17, 127.40, 127.66, 127.83, 128.30, 128.58, 129.50, 134.29, 136.92, 137.33, 139.06. MS $(\mathrm{m} / \mathrm{z}) 568\left(\mathrm{M}^{+}\right), 553,521,506,491,474,459,444,427,412,380,237$. HRMS calc. for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~S}_{4}$ : 568.1387; found: 568.1419. Stereochemistry of 5 was determined by the X-ray analysis ( $R=0.052, R w$ $=0.053$ ).
14. Karakasa, T.; Takeda, S.; Saito, T.; Motoki, S. Bull. Chem. Soc. Jpn. 1986, 59, 3279.
15. 7: Yellow liquid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.60(\mathrm{~d}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz}), 3.83(\mathrm{~d}, 1 \mathrm{H}, J=13.1 \mathrm{~Hz})$, $6.18(\mathrm{~s}, 1 \mathrm{H}), 6.92-7.58(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 46.71,75.83,123.87,126.71$, $127.09,127.38,127.74,127.84,128.59,128.68,129.18,130.56,133.29,136.18,142.33,144.07$. MS $(\mathrm{m} / \mathrm{z}) 346\left(\mathrm{M}^{+}\right), 313,256,224,192,91,77$. HRMS calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~S}_{2}: 346.0850$; found: 346.0816 .
16. 8: $\mathrm{Mp} 122.0-123.0{ }^{\circ} \mathrm{C}$ (yellow needles from dichloromethane-hexane). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 3.66 (s, 2H), 7.04 (s, 1 H ), $7.01-7.96(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 37.68,119.87$, 127.05, 128.07, 128.11, 128.30, 128.47, 128.54, 128.85, 128.98, 132.24, 136.66, 138.40, 138.97, 162.87, 188.35. MS (m/z) $239\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{Ph}\right), 105,91,77$. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{OS}: \mathrm{C} 80.00, \mathrm{H} 5.45$. Found: C 79.65, H 5.46.
17. 9: $\mathrm{Mp} 234.0-235.0^{\circ} \mathrm{C}$ (decomp.) (yellow prisms from dichloromethane-hexane). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( 500 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}$ ) $\delta 2.54-2.57(\mathrm{~m}, 4 \mathrm{H}), 2.80-2.85(\mathrm{~m}, 2 \mathrm{H}), 3.41(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 6.73-7.80(\mathrm{~m}, 20 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 60^{\circ} \mathrm{C}\right.$ ) $\delta 28.20,29.26,66.10,127.00,127.05,127.60,128.42,128.74,129.64$ (duplicate), $130.61,138.89,139.67 . \mathrm{MS}(\mathrm{m} / \mathrm{z}) 564$ (M) ) $536,508,476,472,444,412,387,366,334$, 302, 221, 189, 145, 121, 77. Anal. calc. for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~S}_{4}:$ C 72.23, H 4.96. Found: C 72.56, H 5.15. Stereochemistry of 9 was determined by the X -ray analysis ( $R=0.057, R w=0.063$ ).
18. Levek, T. J.; Kiefer, E. F. J. Am. Chem. Soc. 1976, 98, 1875.
